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A simple and economical synthesis of substituted furans and pyrroles, by ligand-free CuCl2-catalyzed het-
erocyclodehydration of readily available 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols,
respectively, is presented. Reactions are carried out in MeOH at 80–100 �C for 1–24 h and afford the cor-
responding heterocyclic derivatives in 53–99% isolated yields.

� 2010 Elsevier Ltd. All rights reserved.
Copper catalysis has recently acquired an increasing impor-
tance, in view of the higher availability, lower toxicity, and lower
environmental impact of copper-based catalysts when compared
with other commonly employed transition metal catalysts.1 We
have recently reported several examples of synthesis of heterocy-
clic derivatives by heteroannulation reactions by using inexpensive
CuCl2 as catalyst under ligand-free conditions.2

We have now found that CuCl2 is also an excellent catalyst for
realizing the 5-endo-dig heterocyclodehydration of readily avail-
able 3-yne-1,2-diols3 and N-Boc- or N-tosyl-1-amino-3-yn-2-ols,4

to produce substituted furans and pyrroles, respectively, in good
to high yields (Eq. (1)).
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It is important to point out that the heterocyclodehydration of
3-yne-1,2-diols to give the corresponding furans was previously
reported under Au,5a,b Ru,5c Ag,5d,e Mo,5f,g or Pd5h,i catalysis. In par-
ticular, mild and efficient reaction conditions have been recently
developed under Au–Ag co-catalysis.5a,b To the best of our knowl-
edge, however, no examples of copper-catalyzed formation of fur-
ans from 3-yne-1,2-diols have been reported so far in the
literature. Also, the heterocyclodehydration of N-substituted 1-
amino-3-yn-2-ols to give the corresponding pyrroles was previ-
ously reported to occur under palladium5i and gold catalysis.5a,b

However, no general method for the conversion of N-substituted
1-amino-3-yn-2-ols into pyrroles in the presence of catalytic
amounts of copper has so far appeared in the literature.6–8

We began our investigations with 3-yne-1,2-diols. When 2-
methyl-4-phenylbut-3-yne-1,2-diol 1a (R1 = H, R2 = Me, R3 = Ph,
Y = O) was let to react at 80 �C in MeOH for 1 h in the presence
of 2 mol % of CuCl2, we observed the formation of 4-methyl-2-
phenylfuran 2a in 37% GLC yield at 47% substrate conversion
(Table 1, entry 1). Substrate conversion achieved 100% after 5 h,
with a GLC yield of 2a of 60% (55% isolated, Table 1, entry 2). The
same reaction, carried out at 100 �C for 2 h, led to furan 2a in
75% isolated yield (Table 1, entry 3). The reaction did not take place
in aprotic solvents, such as 1,2-dimethoxyethane (DME), dioxane,
or acetonitrile (Table 1, entries 4–6), or using CuI as the catalyst
(Table 1, entry 7), while CuCl led to less satisfactory results (Table 1,
entry 8).
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Table 1
Heterocyclodehydration reactions of 2-methyl-4-phenylbut-3-yne-1,2-diol 1a under different conditionsa

OH

Ph
Me OH

O

Me

Ph

1a 2a
H2O

catalyst

Entry Catalyst Solvent T (�C) Time (h) Conversion of 1ab (%) Yield of 2ac (%)

1 CuCl2 MeOH 80 1 47 37
2 CuCl2 MeOH 80 5 100 60 (55)
3 CuCl2 MeOH 100 2 100 80 (75)
4 CuCl2 DME 80 1 3 0
5 CuCl2 Dioxane 80 1 1 0
6 CuCl2 MeCN 80 1 3 0
7 CuI MeOH 80 1 0 0
8 CuCl MeOH 80 1 30 19

a All reactions were carried out using 0.2 mmol of 1a per mL of solvent (1 mmol scale based on 1a) in the presence of 2% of catalyst.
b Based on starting 1a, by GLC.
c GLC yields (isolated yields), based on starting 1a.
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Having established the possibility to realize the heterocyclode-
hydration of 1a in MeOH with CuCl2 as catalyst, we then tested the
reactivity of differently substituted 3-yne-1,2-diols, in order to as-
sess the generality of the method. The reactivity of 2,4-diphenyl-
but-3-yne-1,2-diol 1b was similar to that of 1a, with the
corresponding furan 2b being formed in 53% isolated yield (Table
2, entry 1). On the other hand, 2-phenyloct-3-yne-1,2-diol 1c, bear-
ing an alkyl rather than a phenyl group at C-4, turned out to be
more reactive, and the reaction could be carried out at 80 �C for
2 h, with an isolated yield of furan 2c of 80% (Table 2, entry 2).

The reaction also worked nicely with substrates bearing an
additional alkynyl group at C-2, as in the case of 3-hex-1-ynyl-
non-4-yne-2,3-diol 1d, which was converted into the correspond-
ing 5-butyl-3-hex-1-ynyl-2-methylfuran 2d with an isolated
yield as high as 91% working at 80 �C for 2 h (Table 2, entry 3).9,10

The reaction was then extended to N-Boc-1-amino-3-yn-2-ols,
for the synthesis of substituted pyrroles. Under the same condi-
tions already optimized for 3-yne-1,2-diols 1a–d (2 mol % of CuCl2,
in MeOH as the solvent at 80–100 �C), N-Boc-2-amino-1-phenyl-
non-4-yn-3-ol 1e (Y = NBoc, R1 = Bn, R2 = H, R3 = Bu) turned out
to be less reactive, as shown by the results reported in Table 2, en-
try 4 (to be compared with those reported in Table 2, entry 1). In
any case, the formation of N-Boc-2-benzyl-5-butylpyrrole 2e was
indeed observed, thus confirming the possibility to obtain pyrroles
Table 2
CuCl2-catalyzed synthesis of substituted furans and pyrroles 2 by 5-endo-dig heterocyclod

YH

R3R2 OH
CuCl2 

1
H2OR1

Entry 1 Y R1 R2 R3 Mol % of CuCl2

1 1b O H Ph Ph 2
2 1c O H Ph Bu 2
3 1d O Me C„CBu Bu 2
4 1e NBoc Bn H Bu 2
5 1e NBoc Bn H Bu 5
6 1f NBoc Me H Bu 2
7 1f NBoc Me H Bu 5
8 1g NBoc Me C„CBu Bu 2
9 1h NTs Me C„CBu Bu 2

a All reactions were carried out in MeOH in the presence of CuCl2, using 0.2 mmol of
b Based on starting 1, by GLC.
c Isolated yield, based on starting 1.
by CuCl2-catalyzed heterocyclodehydration of N-Boc-1-amino-3-
yn-2-ols. In order to compensate for the lower reactivity of 1e with
respect to 1a–d, we carried out the reaction with a lower sub-
strate-to-catalyst ratio: with 5 mol % of CuCl2 at 100 �C, substrate
conversion reached 100% after 15 h, with an isolated yield of 2e
of 70% (Table 2, entry 5). N-Boc-2-aminonon-4-yn-3-ol 1f
(Y = NBoc, R1 = Me, R2 = H, R3 = Bu) behaved similarly, as shown
in Table 2, entries 6 and 7 (to be compared with entries 4 and 5,
respectively). On the other hand, a substrate bearing an additional
alkynyl group at C-2, such as N-Boc-7-(1-aminoethyl)trideca-5,8-
diyn-7-ol 1g (Y = NBoc, R1 = Me, R2 = C„CBu, R3 = Bu), was signifi-
cantly more reactive, leading to the corresponding pyrrole 2g in
practically quantitative yield after only 1 h reaction time at 80 �C
(Table 2, entry 8). N-Ts-1-amino-3-yn-2-ols could also be success-
fully used, as shown by the result obtained in the case of N-Ts-7-
(1-aminoethyl)trideca-5,8-diyn-7-ol 1h (Y = Ts, R1 = Me, R2 = C„CBu,
R3 = Bu) (Table 2, entry 9).9,10

The plausible mechanism for the formation of heterocyclic deriv-
atives 2 starting from substrates 1 is shown in Scheme 1. It involves
the intramolecular 5-endo-dig nucleophilic attack of the –YH group
to the triple bond coordinated to CuCl2, followed by protonolysis
and dehydration or vice versa.

In conclusion, we have developed a convenient, practical, and
economical synthesis of substituted furans and pyrroles, by hetero-
ehydration of 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols 1a

Y

R2

R3
cat

2

R1

T (�C) Time (h) Conversion of 1ab (%) 2 Yield of 2c (%)

100 3 100 2b 53
80 2 100 2c 80
80 2 100 2d 91

100 24 94 2e 42
100 15 100 2e 70
100 24 95 2f 56
100 15 100 2f 56

80 1 100 2g 99
80 8 100 2h 83

1 per mL of solvent (1 mmol scale based on 1).
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Scheme 1. Plausible reaction mechanism for the formation of substituted furans
and pyrroles 2 by CuCl2-catalyzed heterocyclization of 3-yne-1,2-diols and N-Boc-
or N-tosyl-1-amino-3-yn-2-ols 1.
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cyclodehydration of readily available 3-yne-1,2-diols and N-substi-
tuted 1-amino-3-yn-2-ols, catalyzed by CuCl2 under ligand-free
conditions. The possibility to obtain furan and pyrrole derivatives
starting from readily available substrates and employing a simple
and inexpensive catalyst appears particularly attractive, also in view
of the importance of these classes of heterocyclic compounds.11,12
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